Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339622

RESUMEN

A novel conductive composite based on PEDOT:PSS, BSA, and Nafion for effective immobilization of acetic acid bacteria on graphite electrodes as part of biosensors and microbial fuel cells has been proposed. It is shown that individual components in the composite do not have a significant negative effect on the catalytic activity of microorganisms during prolonged contact. The values of heterogeneous electron transport constants in the presence of two types of water-soluble mediators were calculated. The use of the composite as part of a microbial biosensor resulted in an electrode operating for more than 140 days. Additional modification of carbon electrodes with nanomaterial allowed to increase the sensitivity to glucose from 1.48 to 2.81 µA × mM-1 × cm-2 without affecting the affinity of bacterial enzyme complexes to the substrate. Cells in the presented composite, as part of a microbial fuel cell based on electrodes from thermally expanded graphite, retained the ability to generate electricity for more than 120 days using glucose solution as well as vegetable extract solutions as carbon sources. The obtained data expand the understanding of the composition of possible matrices for the immobilization of Gluconobacter bacteria and may be useful in the development of biosensors and biofuel cells.


Asunto(s)
Grafito , Polímeros , Polímeros/química , Albúmina Sérica Bovina , Carbono/química , Bacterias , Glucosa/química
2.
Zookeys ; 1181: 29-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810459

RESUMEN

Dung beetles (Scarabaeidae, Scarabaeinae) are among the most cost-effective and informative biodiversity indicator groups, conveying rich information about the status of habitats and faunas of an area. Yet their use for monitoring the mammal species, that are the main providers of the food for the dung beetles, has only recently been recognized. In the present work, we studied the diet of four endemic Madagascan dung beetles (Helictopleurusfissicollis (Fairmaire), H.giganteus (Harold), Nanosagaboides (Boucomont), and Epilissussplendidus Fairmaire) using high-throughput sequencing and amplicon metagenomics. For all beetle species, the ⅔-¾ of reads belonged to humans, suggesting that human feces are the main source of food for the beetles in the examined areas. The second most abundant were the reads of the cattle (Bostaurus Linnaeus). We also found lower but significant number of reads of six lemur species belonging to three genera. Our sampling localities agree well with the known ranges of these lemur species. The amplicon metagenomics method proved a promising tool for the lemur inventories in Madagascar.

3.
Polymers (Basel) ; 15(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765637

RESUMEN

Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.

4.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374463

RESUMEN

Electron beam additive manufacturing from dissimilar metal wires was used to intermix 5, 10 and 15 vol.% of Ti-Al-Mo-Z-V titanium alloy with CuAl9Mn2 bronze on a stainless steel substrate. The resulting alloys were subjected to investigations into their microstructural, phase and mechanical characteristics. It was shown that different microstructures were formed in an alloy containing 5 vol.% titanium alloy, as well as others containing 10 and 15 vol.%. The first was characterized by structural components such as solid solution, eutectic intermetallic compound TiCu2Al and coarse grains of γ1-Al4Cu9. It had enhanced strength and demonstrated steady oxidation wear in sliding tests. The other two alloys also contained large flower-like Ti(Cu,Al)2 dendrites that appeared due to the thermal decomposition of γ1-Al4Cu9. This structural transformation resulted in catastrophic embrittlement of the composite and changing of wear mechanism from oxidative to abrasive.

5.
Syst Biol ; 72(5): 1084-1100, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094905

RESUMEN

The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multispecies anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to: 1) use controlled vocabularies and create semiautomated computer-parsable insect morphological descriptions; 2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and 3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies.


Asunto(s)
Artrópodos , Animales , Filogenia , Insectos , Informática , Biodiversidad
6.
Materials (Basel) ; 16(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36769962

RESUMEN

A novel approach to electric explosion of intertwined wires to obtain homogeneous powder mixtures intended for preparing feedstock for extrusion 3D printing has been applied. The powder were composed of spherical micron- and nano-sized W/Cu particles in-situ alloyed by Zn and Ni during electric explosion of intertwined dissimilar metal wires is offered. The mean particle size measured by micron-sized particles was not more than 20 µm. The average number size of these particles was 3 µm and it was dependent on the energy input. The powders contained phases such as α-W, ß-W/W3O as well as FCC α-Cu(Zn) and α-Cu(Ni) solid solutions with the crystalline lattice parameters 3.629 and 3.61 A, respectively.

7.
Materials (Basel) ; 16(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770023

RESUMEN

In the present work, the tribological experiments on sliding the electron beam composite M2+WC coating have been carried out with characterization of the sample microstructures and phases both before and after the testing using metallography, SEM, EDS, and XRD. The sliding in the speed range 0.8-3.6 m/s resulted in simultaneous reduction in both wear rate and coefficient of friction with the sliding speed. Investigations showed that such a tribological adaptation was due to the tribochemical generation of lubricative FeWO4 and Fe2WO6 mixed oxides and the generation of a mechanically mixed composite layer on the worn surfaces that consisted of carbide fragments, an oxidized metal matrix, and was lubricated by in-situ formed mixed iron-tungsten oxides.

8.
Materials (Basel) ; 16(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770078

RESUMEN

This paper is devoted to using multi-pass friction stir processing (FSP) for admixing 1.5 to 30 vol.% copper powders into an AA5056 matrix for the in situ fabrication of a composite alloy reinforced by Al-Cu intermetallic compounds (IMC). Macrostructurally inhomogeneous stir zones have been obtained after the first FSP passes, the homogeneity of which was improved with the following FSP passes. As a result of stirring the plasticized AA5056, the initial copper particle agglomerates were compacted into large copper particles, which were then simultaneously saturated by aluminum. Microstructural investigations showed that various phases such as α-Al(Cu), α-Cu(Al) solid solutions, Cu3Al and CuAl IMCs, as well as both S and S'-Al2CuMg precipitates have been detected in the AA5056/Cu stir zone, depending upon the concentration of copper and the number of FSP passes. The number of IMCs increased with the number of FSP passes, enhancing microhardness by 50-55%. The effect of multipass FSP on tensile strength, yield stress and strain-to-fracture was analyzed.

9.
Syst Biol ; 72(3): 681-693, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-36788381

RESUMEN

This article proposes new Markov models for phylogenetic inference with anatomically dependent (inapplicable) morphological characters. The proposed models can explicitly model an anatomical dependency in which one or several characters are allowed to evolve only within a specific state of the hierarchically upstream character. The new models come up in two main types depending on the type of character hierarchy. The functions for constructing custom character hierarchies are provided in the R package rphenoscate. The performance of the new models is assessed using theory and simulations. This article provides practical recommendations for using the new models in Bayesian phylogenetic inference with RevBayes. [Bayesian; inapplicable characters; likelihood; Markov models; morphology; parsimony; RevBayes.].


Asunto(s)
Filogenia , Teorema de Bayes
10.
Materials (Basel) ; 16(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36676554

RESUMEN

In the presented work, the effect of friction stir processing admixing the zirconium tungstate ZrW2O8 powder on the microstructure, mechanical and tribological properties of the AA5056 Al-Mg alloy stir zone has been studied. The FSP resulted in obtaining dense composite stir zones where α-ZrW2O8 underwent the following changes: (i) high-temperature transformation into metastable ß'-ZrW2O8 and (ii) decomposition into WO3 and ZrO2 oxides followed by the formation of intermetallic compounds WAl12 and ZrAl3. These precipitates served as reinforcing phases to improve mechanical and tribological characteristics of the obtained fine-grained composites. The reduced values of wear rate and friction coefficient are due to the combined action the Hall-Petch mechanism and reinforcement by the decomposition products, including Al2O3, ZrO2, ß'-ZrW2O8 and intermetallic compounds such as WAl12 and ZrAl3. Potential applications of the above-discussed composites maybe related to their improved tribological characteristics, for example in aerospace and vehicle-building industries.

11.
Biosensors (Basel) ; 12(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36140084

RESUMEN

Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.


Asunto(s)
Fuentes de Energía Bioeléctrica , Gluconobacter oxydans , Grafito , Purificación del Agua , Fuentes de Energía Bioeléctrica/microbiología , Compuestos Bicíclicos Heterocíclicos con Puentes , Electricidad , Electrodos , Polímeros de Fluorocarbono , Polímeros , Aguas Residuales/química
12.
Materials (Basel) ; 15(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36143581

RESUMEN

Novel composite CuA19Mn2/Udimet-500 alloy walls with different content of the Udimet 500 were built using electron-beam double-wire-feed additive manufacturing. Intermixing both metals within the melted pool resulted in dissolving nickel and forcing out the aluminum from bronze. The resulting phases were NiAl particles and grains, M23C6/NiAl core/shell particles and Cu-Ni-Al solid solution. Precipitation of these phases resulted in the increased hardness and tensile strength as well as reduced ductility of the composite alloys. Such a hardening resulted in improving the wear resistance as compared to that of source aluminum bronze.

13.
Materials (Basel) ; 15(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35591543

RESUMEN

Electron beam additive wire-feed manufacturing of Cu-3wt.%S-0.8wt.%Mn bronze thin wall on a stainless steel substrate has been carried out at heat input levels of 0.19, 0.25, and 0.31 kJ/mm. The microstructures of as-deposited metal ranged from low aspect ratio columnar with equiaxed grain layers to zig-zagged and high aspect ratio columnar, as depended on the heat input. Post-deposition annealing at 900 °C for 6 h resulted in recrystallization of the high aspect ratio columnar grains with further grain growth by boundary migration. Pre-deformation by 10% thickness reduction and then annealing at 900 °C for 6 h also allowed obtaining recrystallized grain structures with less fraction of twin boundaries but higher fraction of high-angle ones, as compared to those of only annealed sample. Pre-deformation and ensuing annealing allowed simultaneous increasing of the ultimate tensile strength and strain-to-fracture.

14.
Materials (Basel) ; 15(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407759

RESUMEN

Multi-pass friction stir processing (FSP) was used to obtain a titanium alloy/copper hybrid composite layer by intermixing copper powder with a Ti6Al4V alloy. A macrostructurally inhomogeneous stir zone was obtained with both its top and middle parts composed of fine dynamically recrystallized α- and ß-Ti grains, as well as coarse intermetallic compounds (IMCs) of Ti2Cu and TiCu2, respectively. Some ß grains experienced ß â†’ α decomposition with the formation of acicular α-Ti microstructures either inside the former ß-Ti grains or at their grain boundaries. Both types of ß â†’ α decomposition were especially clearly manifested in the vicinity of the Ti2Cu grains, i.e., in the copper-lean regions. The middle part of the stir zone additionally contained large dislocation-free ß-Ti grains that resulted from static recrystallization. Spinodal decomposition, as well as solid-state amorphization of copper-rich ß-Ti grains, were discovered. The FSPed stir zone possessed hardness that was enhanced by 25% as compared to that of the base metal, as well as higher strength, ductility, and wear resistance than those obtained using four-pass FSPed Ti6Al4V.

15.
3 Biotech ; 12(2): 42, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35096499

RESUMEN

The work considered the properties of a biosensor based on a novel nanomaterial-modified thermally expanded graphite (TEGM). The main focus was on whether the procedure of additional graphite thermal expansion would affect the electrochemical properties of biosensors based on membrane fractions of acetic acid bacteria Gluconobacter oxydans. Raman spectroscopy, scanning electron microscopy and electrochemical analysis were used for the study. Raman spectra showed that the formation of TEGM led to its stratification into smaller particles and a better orderly layered structure with high "graphenization" degree. Modification of TEG led to the formation of additional cavities into which bacterial cells or bacterial membrane fractions could be immobilized and affect the electrical conductivity of the biosensors positively. Calculation of the heterogeneous charge transfer constants showed that processes occurring on the electrodes are quasi-reversible. The limiting stage of these processes is the transfer of an electron from a biological component on the electrode surface, not the diffusion of the analyte from the solution to the active centers of the enzyme. We showed the possibility of developing third-generation mediator-free biosensors for glucose detection based on TEGM, as well as of second-generation mediator biosensors for glucose, ethanol and glycerol detection.

16.
Materials (Basel) ; 14(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34832329

RESUMEN

A gradient transition zone was obtained using electron beam deposition from AA4047 wire on AA7075 substrate and characterized for microstructures, tensile strength and corrosion resistance. The microstructure of the transition zone was composed of aluminum alloy grains, Al/Si eutectics and Fe-rich and Si-rich particles. Such a microstructure provided strength comparable to that of AA7075-T42 substrate but more intense corrosion due to the higher amount of anodic Mg2Si particles. The as-deposited AA4047 zone formed above the transition zone was composed of aluminum alloy dendrites and interdendritic Al/Si eutectics with low mechanical strength and high corrosion potential.

17.
Materials (Basel) ; 14(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832351

RESUMEN

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall's height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall's height).

18.
Zookeys ; 1061: 75-86, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707453

RESUMEN

We describe a new species of dung beetle, Epactoidesgiganteus sp. nov., from a single female specimen allegedly collected in the 19th century on Réunion island and recently found at the Muséum national d'Histoire naturelle, Paris. This species differs from other species of Epactoides by larger size and a set of other distinctive morphological characters. Epactoidesgiganteus sp. nov. is the first native dung beetle (Scarabaeinae) of Réunion, and its discovery expands the known area of distribution of the genus Epactoides, which was hitherto believed to be endemic to Madagascar. Like other taxa from Madagascar and peripheral islands (e.g., Comoro, Seychelles, Mascarenes), E.giganteus sp. nov. may have reached Réunion by over-water dispersal. Given the rapid loss of biodiversity on Réunion island and the fact that no additional specimens were re-collected over the last two centuries, it is very likely that E.giganteus sp. nov. has gone extinct. However, we have unconfirmed evidence that the holotype of E.giganteus sp. nov. might be a mislabeled specimen from Madagascar, which would refute the presence of native dung beetles on Réunion. We discuss both hypotheses about the specimen origin and assess the systematic position of E.giganteus sp. nov. by examining most of the described species of Madagascan Epactoides. Additionally, we provide a brief overview of the dung beetle fauna of Mascarene Archipelago.

19.
Materials (Basel) ; 14(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34576429

RESUMEN

Dissimilar friction stir processing on CuZn37/AA5056 was performed to study structural and phase evolution of a friction stir zone. Formation of 5-10 µm intermetallic compounds (IMCs) such as Al2Cu was the main type of diffusion reaction between copper and aluminum. Other alloying elements such as Mg and Zn were forced out of the forming Al2Cu grains and dissolved in the melt formed due to exothermic effect of the Al2Cu formation. When solidified, these Zn-enriched zones were represented by α-Al+Al2Cu+Zn phases or α-Al+Al2Cu+Zn+MgZn regions. Eutectic Zn+MgZn was undoubtedly formed the melt after stirring had stopped. These zones were proven to be weak ones with respect to pull-off test since MgZn was detected on the fracture surface. Tensile strength of the stirred zone metal was achieved at the level of that of AA5056.

20.
Biosensors (Basel) ; 11(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34562922

RESUMEN

Immobilization of the biocomponent is one of the most important stages in the development of microbial biosensors. In this study, we examined the electrochemical properties of a novel PEDOT:PSS/graphene/Nafion composite used to immobilize Gluconobacter oxydans bacterial cells on the surface of a graphite screen-printed electrode. Bioelectrode responses to glucose in the presence of a redox mediator 2,6-dichlorophenolindophenol were studied. The presence of graphene in the composite reduced the negative effect of PEDOT:PSS on cells and improved its conductivity. The use of Nafion enabled maintaining the activity of acetic acid bacteria at the original level for 120 days. The sensitivity of the bioelectrode based on G. oxydans/PEDOT:PSS/graphene/Nafion composite was shown to be 22 µA × mM-1 × cm-2 within the linear range of glucose concentrations. The developed composite can be used both in designing bioelectrochemical microbial devices and in biotechnology productions for long-term immobilization of microorganisms.


Asunto(s)
Ácido Acético , Bacterias , Técnicas Biosensibles , Compuestos Bicíclicos Heterocíclicos con Puentes , Carbono , Conductividad Eléctrica , Electrodos , Polímeros de Fluorocarbono , Gluconobacter oxydans , Glucosa , Grafito/química , Oxidación-Reducción , Polímeros , Poliestirenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...